Math, asked by rahul02661, 22 days ago

Find the sum of first 24 terms of the list of the numbers whose nth term is given by an = 3 + 2n

Answers

Answered by ItzBrainlyLords
1

Solution :

Given :

 \\  \large \sf \: nth \:  \: term  = 3 + 2n \\  \\  \large \sf \: sum \:  \: of \: 24 \: terms =  {?} \\  \\  \large \sf \underline{finding : } \\  \\  \large \sf \: taking \:  \: (n = 1) \\  \\  \large \sf  : \implies \: a1 = 3 + 2 \times 1\\  \\  \large \sf  : \implies \: a1 = 5 \\  \\ \large \sf \: taking \:  \: (n = 2) \\  \\  \large \sf :  \implies \: a2 = 3  + 2 \times 2 \\  \\  \large \sf :  \implies \: a2 = 7\\  \\

Now,

 \\  \\  \large \sf \: common \:  \: difference = a2 - a1 \\  \\  \large \sf \implies \: d = 7 - 5 = 2 \\  \\

Now..

 \\  \\  \large \sf \: sum \:  \: of \:  \: nth \:  \: term :  \\  \\  \large \tt  : \implies   \frac{n}{2}  [2a + (n - 1)d] \\  \\  \\  \large \tt  : \implies   \frac{ \cancel{24}}{ \cancel2}  [2 \times 5+ (24- 1)2] \\  \\  \\   \large \tt  : \implies   12  [10 + 23 \times 2] \\  \\  \\ \large \tt  : \implies   12   \times 56 \\  \\  \\

Hence, Sum of 24th term of the given A.P is 672

Answered by itzgeniusgirl
87

Given :-

  • an = 3 + 2n

To find :-

  • sum of Frist 24 terms

Solution :-

\sf\boxed{\bold{\pink{1st \: term : - }}}\\

 \tt = a1 \:  = 3 + 2(1) \\  \\  \tt   = a \:  = 3 + 2 \\  \\ \tt \:  = a \:  = 5

\sf\boxed{\bold{\pink{2nd \: term: -  }}}\\

 \tt =  a2 = 3 + 2(2) \\  \\  \tt   = a \:  = 3 + 4 \\  \\  \tt  = a = 7

\sf\boxed{\bold{\pink{3rd \: term : -  \: }}}\\

 \tt =a3 = 3 + 2(3) \\  \\  \tt = a = 3  + 6 \\  \\   \tt = a \:  = 9

\sf\boxed{\bold{\pink{4th \: term : -  }}}\\

 \tt = a4 = 3 + 2(4) \\  \\  \tt = a = 3 + 8 \\  \\  \tt = a = 11

so therefore the series are 5,7,9,11

so therefore difference between consecutive sums are same

so therefore it is an ap

now we need to find the sum of Frist 24 terms

now,

n = 24

a = 5

d = 7 - 5 = 2

now by putting values in the formula :-

:\implies\sf  \: sum \:  =  \frac{n}{2} (2a + (n - 1)d) \\  \\  \\ :\implies\sf  \:  \frac{24}{2} (2 \times 5 + (24 - 1)2) \\  \\  \\ :\implies\sf  \: 12(10 + (23)2) \\  \\  \\

:\implies\sf  \: 12(10 + 46) \\  \\  \\ :\implies\sf  \: 12 \times 56 \\  \\  \\ :\implies\sf  \: 672

\sf\boxed{\bold{\pink{so \: therefore \: the \: sum \: of \: 24 \: terms \: are \: 672}}}

Similar questions