Math, asked by zaidbhayla, 3 months ago

Find the Sum of first 25 terms of an arithmetic sequence 5, 8 , 11 , 14 ,...​

Answers

Answered by lamiya95
6

Answer:

1025

Step-by-step explanation:

 \frac{n}{2}  \times (2a + (n - 1)d)

here

n means 25

a means 5

d means 3

Answered by Anonymous
262

Given :–

  • Arithmetic terms 5 , 8 , 11 , 14..
  • Where a = 5 and d = 3

Need To Find Out :–

  • Sum of first 25 terms,S₂₅ =?

Solution :–

As we know the formula for finding sum of an arithmetic sequence given by :-

\boxed{\:\:\sf\red {{S_{n}\:=\:\dfrac{n}{2}\:[2a\:+\:(n\:-\:1)d] }\:\:}}\\

Where:-

  • a = 5
  • d = 3
  • n = 25

Now, Put these values in the Formula :-

:\implies \sf{S_{n}\:=\:\dfrac{n}{2}\:[2a\:+\:(n\:-\:1)d] }

:\implies \sf{S_{25}\:=\:\dfrac{25}{2}\:[2(5)\:+\:(25\:-\:1)(3)] }

:\implies \sf{S_{25}\:=\:\dfrac{25}{2}\:[10\:+\:(24\:\times\:3)] }

:\implies \sf{S_{25}\:=\:\dfrac{25}{2}\:(10\:+\:72) }

:\implies \sf{S_{25}\:=\:\dfrac{25}{2}\:\times\:82 }

:\implies \sf{S_{25}\:=\:25\:\times\:41 }

:\implies \red {\boxed{\sf{S_{25}\:=\:1025}}}\\\\

\sf\therefore{\underline{Hence\: ,the \: Sum \: of\:  first\:  25\:  terms \: is \:  \red{\bold{1025}.}}}\\

Similar questions