Math, asked by japleen19, 9 months ago

find the sum of first 25 terms of ap -2, -5, -8, -11​

Answers

Answered by Anonymous
4

 \large\bf\underline{Given:-}

  • AP = -2, -5 , -8 ,-11

 \large\bf\underline {To \: find:-}

  • sum of 25 terms

 \huge\bf\underline{Solution:-}

≫ Given AP = -2 , -5 ,-8 , -11

  • ➣ First term = -2
  • ➣ common difference = -5-(-2) = -3
  • ➣ Number of terms = 25

 \bullet \:  \large \bf \: S_n =  \frac{n}{2} [2a + (n - 1)d]

 \rm \rightarrowtail \:s_{25}  =  \frac{25}{2}  \{2 \times(  - 2) + 24 \times  (- 3 ) \} \\  \\  \rm \rightarrowtail \:s_{25} =  \frac{25}{2}  \{ - 4 - 72 \} \\  \\  \rm \rightarrowtail \:s_{25} =  \frac{25}{2} \{  - 76\} \\  \\  \rm \rightarrowtail \:s_{25} =  \frac{25}{ \cancel2}  \times ( \cancel{ - 76}) \\  \\  \rm \rightarrowtail \:s_{25} = 25 \times ( - 38) \\  \\  \rm \rightarrowtail \:s_{25} = -  950

So,

≫Sum of first 25 terms of given AP is -950

Answered by MisterIncredible
5

Given :-

Arithmetic progession = - 2 , - 5 , - 8 , - 11 . . . . . . .

Required to find :-

  • Sum of the first 25 terms

Formula used :-

\large{\dagger{\boxed{\rm{{a}_{nth} = a + ( n - 1 ) d }}}}

\large{\dagger{\boxed{\rm{ {S}_{nth} = \dfrac{n}{2}[first \; term + last \ term ] }}}}

Solution :-

Consider the given arithmetic progession ,

AP = - 2 , - 5 , - 8 , - 11 . . . . . . .

So,

  • >> First term ( a ) = - 2

Common difference = ( 2nd term - 1st term ) = ( 3rd term - 3nd term )

=> ( - 5 - ( - 2 ) = ( - 8 - ( - 5 )

=> ( - 5 + 2 ) = ( - 8 + 5 )

=> ( - 3 ) = ( - 3 )

Hence,

  • >> Common difference ( d ) = - 3

Now,

Using the formula ,

\large{\dagger{\boxed{\rm{{a}_{nth} = a + ( n - 1 ) d }}}}

( This formula enables us to find the 25th term )

>> Substitute the required values <<

\longrightarrow{\sf{ {a}_{nth} = {a}_{25} }}

\longrightarrow{\sf{ {a}_{25} = - 2 + ( 25 - 1 ) - 3 }}

\longrightarrow{\sf{ {a}_{25} = - 2 + ( 24 ) - 3 }}

\longrightarrow{\sf{ {a}_{25} = -2 + ( - 72 ) }}

\longrightarrow{\sf{ {a}_{25} = - 2 - 72 }}

\longrightarrow{\sf{ {a}_{25} = - 74 }}

  • 25th term = - 74

The last term till which we want to find the sum is - 74 .

Hence,

Using the formula,

\large{\dagger{\boxed{\rm{ {S}_{nth} = \dfrac{n}{2}[first \; term + last \ term ] }}}}

Here,

\Rightarrow{\tt{ {S}_{nth} = {S}_{25} }}

\Rightarrow{\tt{ {S}_{25} = \dfrac{25}{2} [ -2 + ( - 74 ) ]}}

\Rightarrow{\tt{ {S}_{25} = \dfrac{25}{2} [ - 2 - 74 ] }}

\Rightarrow{\tt{ {S}_{25} = \dfrac{ 25}{2} [ - 76 ] }}

\Rightarrow{\tt{ {S}_{25} = \dfrac{25}{\cancel{2}} \times {\cancel{ - 76 }}^{\large{- 38 }} }}

\Rightarrow{\tt{ {S}_{25} = 25 \times - 38 }}

\Rightarrow{\tt{ {S}_{25} = - 950 }}

\text{\underline{\underline{ Sum of first 25 terms = $- 950 $ }}}{\checkmark}

Similar questions