Find the sum of first 25terms of an A. P. whose nth term is given by an =2-3n
Answers
Answered by
4
An = 2 - 3n
=> a +(n-1)d = - 1 + 3 - 3n
=> a +(n-1)d = - 1 - 3(n-1)
On comparing both sides, we get
a = - 1
d = - 3
S25 = 25/2 [ 2(-1) +(25-1)(-3)]
S25 = 25/2 [ - 2 - 72]
S25 = 25 × ( - 74) / 2
S25 = 25 × (-37)
S25 = - 925
=> a +(n-1)d = - 1 + 3 - 3n
=> a +(n-1)d = - 1 - 3(n-1)
On comparing both sides, we get
a = - 1
d = - 3
S25 = 25/2 [ 2(-1) +(25-1)(-3)]
S25 = 25/2 [ - 2 - 72]
S25 = 25 × ( - 74) / 2
S25 = 25 × (-37)
S25 = - 925
Answered by
4
Given that, Tn=2 -3n
Putting the value of n =1,then
T1 = 2-3*1
=-1
Putting the value of n=2 ,then
T2 =2 -3*2
=2-6
=-4
Therefore, a= -1 and d= -4-(-1) =-4+1=-3
Sn= n/2 {2a +(n-1)d}
S25 =25/2 {2*-1+(25-1)-3}
= 25/2 {-2-72}
= 25/2 *-74
= 25 * -37
= -925
Putting the value of n =1,then
T1 = 2-3*1
=-1
Putting the value of n=2 ,then
T2 =2 -3*2
=2-6
=-4
Therefore, a= -1 and d= -4-(-1) =-4+1=-3
Sn= n/2 {2a +(n-1)d}
S25 =25/2 {2*-1+(25-1)-3}
= 25/2 {-2-72}
= 25/2 *-74
= 25 * -37
= -925
Similar questions