Math, asked by terabaap1292004, 9 months ago

Find the sum of first 30 terms of an AP whose third and fourth terms are 19 and 22 respectively.​

Answers

Answered by hrudhikasurendran
3

Answer:1695

Step-by-step explanation:

a+2d=19-(1)

a+3d=22-(2)

(2)-(1)

d=3

a+2d=19

a+6=19

a=13

x30=a+29d

=13+(29×3)

=13+87

=100

sum of thirty term

s30=n/2(a+x30)

=30/2(13+100)

=15×113

=1695

Answered by Anonymous
9

Answer:-

\sf{The \ sum \ of \ first \ 30 \ terms \ is \ 1695.}

Given:

  • \sf{t_{3}=19}
  • \sf{t_{4}=22}

To find:

\sf{Sum \ of \ first \ 30 \ terms.}

Solution:

\boxed{\sf{tn=a+(n-1)d}}

\sf{According \ to \ first \ condition. }

\sf{a+2d=19...(1)}

\sf{According \ to \ second \ condition. }

\sf{a+3d=22...(2)}

\sf{But, \ t_{4}=t_{3}+d}

\sf{\therefore{22=19+d}}

\sf{\therefore{d=22-19}}

\boxed{\sf{\therefore{d=3}}}

\sf{Substitute \ d=3 \ in \ equation(1), \ we \ get}

\sf{a+2(3)=19}

\sf{\therefore{a+6=19}}

\sf{\therefore{a=19-6}}

\boxed{\sf{\therefore{a=13}}}

_______________________________________

\sf{Here, \ a=13 \ and \ d=3}

\boxed{\sf{S_{n}=\frac{n}{2}[2a+(n-1)d]}}

\sf{\therefore{S_{30}=\frac{30}{2}[2(13)+(30-1)\times3]}}

\sf{\therefore{S_{30}=15[26+29\times3]}}

\sf{\therefore{S_{30}=15[26+87]}}

\sf{\therefore{S_{30}=15\times113}}

\sf{\therefore{S_{30}=1695}}

\sf\purple{\tt{\therefore{The \ sum \ of \ first \ 30 \ terms \ is \ 1695.}}}

Similar questions