Math, asked by 12avanirajput, 1 month ago

find the sum of first 50 terms of an A.P whose nth term is ( 3n + 7 )​ . please explain . ​

Answers

Answered by ripinpeace
3

{S{ \tiny{50}} = 4175}

Step-by-step explanation:

Given -

  • nth term of an A.P is 3n + 7.

To find -

  • Sum of first 50 terms of the A.P .

Solution -

a{ \tiny{n}}  = 3n + 7

 \longmapsto \: a{ \tiny{1}}  = 3(1)+ 7

 \longmapsto \: a{ \tiny{1}}  = 10

 \longmapsto \: a{ \tiny{2}}  = 3(2)+ 7

\longmapsto \: a{ \tiny{2}}  = 6 + 7

\longmapsto \: a{ \tiny{2}}  = 13

\longmapsto \: a{ \tiny{3}}  = 3(3) + 7

\longmapsto \: a{ \tiny{3}}  = 9+ 7

\longmapsto \: a{ \tiny{3}}  = 16

Similarly we can continue to find the successive terms of the A.P .

d =  a{ \tiny{2}}  - a{ \tiny{1}}

\longmapsto d = 13 - 10

\longmapsto  \blue{d = 3}

Now , formula for sum of 'n' terms of an A.P is,

 \large{S{ \tiny{n}}= \Large{\frac{n}{2}}  [2a+(n−1)d]}

On putting the values in the equation , we get ,

 \longmapsto \: S{ \tiny{50}}= \large{\frac{ \cancel{50}}{ \cancel2}}  [2(10)+(50−1)3]

 \longmapsto \:  \large{S{ \tiny{50}}= 25 [20+(49) 3]}

\longmapsto \: \large{S{ \tiny{50}}= 25 [20+147]}

\longmapsto \: \large{S{ \tiny{50}}= 25 [167]}

\longmapsto \:  \orange{ \boxed {S{ \tiny{50}} = 4175}}

Answered by Anonymous
2

Step-by-step explanation:

Sn = 4175

 \:  \:  \:

Similar questions