Math, asked by gunnanere, 5 months ago

find the sum of first 76 terms of an AP whose second and third term are 12 and 20 respectively​

Answers

Answered by mannoftails33
2

Answer; 23712

Step-by-step explanation:

a+2d-a+d=d

20-12=8

d=8 and a=4

na+ n(n+1)/2d=23712 on substitution

n=76

Answered by nandanaMK
7

 \huge\tt{\underline{ \underline{Answer :}}}

 \underline{ \tt{Given } : }

 \tt{a2 = 12} \\  \tt{a3 = 20}

 \tt{S76 =   \:  \: ?}

 \tt{We \:  \:  can  \:  \: write : }

 \tt{a2 = a + 1d   \: = 12} -  -  -  -  - (1)

 \tt{a3 = a + 2d  \: = 20} -  -  -  -  -  (2)

 \tt{Solving  \:  \: equations  \:  \: (1)  \:  \: and  \:  \: (2)} :

 \tt{a + 1d = 12 } \:  \:  \:  - \\  \tt \underline{a + 2d = 20} \:  \:  \:  \:  \:  \:  \:  \\ \tt{ 0 - 1d =  - 8} \:  \:  \:  \:  \:  \:

 \tt{ d =   8}

 \tt{Substituting   \: \:  \: d=8  \:  \: in  \:  \: (1)}

 \tt{a + (8) = 12} \\ \tt{ a = 12 - 8} \:  \:  \:  \\ \tt{ a = 4 }\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \boxed{ \tt{a = 4 \:  \:  \:  \:  \:   \: d = 8}}

 \boxed{ \tt{Sn= \frac{n}{2} [2a + (n - 1)d]}}

 \tt{S76= \frac{76}{2} [2(4) + (75)8]}

 \tt{ = 38[8 +60 0]}

 \tt{ = 38[608]}

 =  \underline{ \underline{ \tt{ 23104}}}

 \tt{Hope \:   \: this \:   \: helps  \: \:  you \: !}

Similar questions