Math, asked by venkatpranesh1525, 1 year ago

Find the sum of first n terms of an A.P. whose nth term is 5n-1. Hence find the sum of first 20 terms ?

Answers

Answered by anithaajith1981
118

Hey mate,

Hope it is helpful

Plz mark me brainliest.....

Attachments:
Answered by mysticd
27

Answer:

S_{n}=\frac{5n^{2}+3n}{2}\\S_{20}=1030

Step-by-step explanation:

 Given\\n^{th}\:term \:of \:A.P = a_{n}=5n-1

 Sum\:of \: first \:n\:terms \\=S_{n}=\sum a_{n}\\=\sum (5n-1)\\=5\sum n - \sum 1\\=5\left(\frac{n(n+1)}{2}\right)-n

 Since, \sum n = \frac{n(n+1)}{2}

=\frac{5n^{2}+5n}{2}-n

=\frac{5n^{2}+5n-2n}{2}

S_{n}=\frac{5n^{2}+3n}{2}\:---(1)

 ii) Sum\:of \:first\:20\:terms\\ = S_{20}

/* Substitute n=20 in equation (1), we get

S_{20}=\frac{5\times (20)^{2}+3\times 20}{2}\\=\frac{2000+60}{2}\\=\frac{2060}{2}\\=1030

Therefore,

S_{n}=\frac{5n^{2}+3n}{2}\\S_{20}=1030

•••♪

Similar questions