Math, asked by deegagagan, 3 days ago

Find the sum of first n terms of the following A.P. ​

Attachments:

Answers

Answered by kishorerams
0

Answer:

The answer is Option A....7n-2/2

Hope u understood and mark me as brainlist

Attachments:
Answered by Syamkumarr
0

Answer:

Sum of n terms = [\frac{7n-1}{2} ]

Step-by-step explanation:

Given problem

Find sum of n terms  AP

[4- \frac{1}{n} ] + [4-\frac{2}{n} ] + [ 4-\frac{3}{n} ] ..  [up to n terms]

⇒ given series is in AP

⇒ first term a = [ 4-\frac{1}{n}]  

⇒ common difference d = a₂ - a₁  

                                         = [4- \frac{2}{n} ] - [4 - \frac{1}{n} ]

                                         = [ \frac{4n - 2}{n} ] - [ \frac{4n - 1}{n} ]

                                         = [\frac{4n - 2 - 4n +1 }{n}]  = -\frac{1}{n}  

⇒ sum of n terms S = \frac{n}{2}[ 2a +(n-1)d]

                                 = \frac{n}{2} [ 2(4-\frac{1}{n} )+ (n-1)(-\frac{1}{n})]  

                                 = \frac{n}{2} [8 - \frac{1}{n} + n(-\frac{1}{n} ) + \frac{1}{n} ]  

                                 = \frac{n}{2} [8- \frac{2}{n} - 1 + \frac{1}{n} ]  

                                 = \frac{n}{2} [7 - \frac{1}{n} ]  

                                 = \frac{n}{2} [  \frac{7n-1}{n}]  = [\frac{7n-1}{2} ]  

⇒ option (b) is correct        

Similar questions