Find the sum of first n terms of the series. 7+77+777+.......
Answers
Answered by
245
7, 77, 777, 7777 ….to n terms.
Sn=7+77+777+7777+……+to n terms
introducing 9
= (7/9) [9+99+999+……+ to n terms]
= (7/9) [(10-1) + (100-1) + (1000-1) +……...+ to n term]
= (7/9) [10+100+1000+……... n terms – (1+1+1+1+…… n terms)
= (7/9) [10+100+1000+………n terms –n]
Here a=10, r=10
= (7/9) [10(10n-1)/ (9) - n]
Sn=7+77+777+7777+……+to n terms
introducing 9
= (7/9) [9+99+999+……+ to n terms]
= (7/9) [(10-1) + (100-1) + (1000-1) +……...+ to n term]
= (7/9) [10+100+1000+……... n terms – (1+1+1+1+…… n terms)
= (7/9) [10+100+1000+………n terms –n]
Here a=10, r=10
= (7/9) [10(10n-1)/ (9) - n]
Anonymous:
Thanx limzy
Answered by
150
Sn=7+77+777+7777+……+to
n terms
= (7/9) [9+99+999+……+ to n terms]
= (7/9) [(10-1) + (100-1) + (1000-1) +……...+ to n term]
= (7/9) [10+100+1000+……... n terms – (1+1+1+1+…… n terms)
= (7/9) [10+100+1000+………n terms –n]
a=10, r=10
= (7/9) [10(10 n-1)/ (9) - n]
= (7/9) [9+99+999+……+ to n terms]
= (7/9) [(10-1) + (100-1) + (1000-1) +……...+ to n term]
= (7/9) [10+100+1000+……... n terms – (1+1+1+1+…… n terms)
= (7/9) [10+100+1000+………n terms –n]
a=10, r=10
= (7/9) [10(10 n-1)/ (9) - n]
Similar questions
Math,
8 months ago
Biology,
8 months ago
Social Sciences,
8 months ago
English,
1 year ago
Chemistry,
1 year ago