Find the sum of first nth term of an AP series is ㏒a+㏒a²\b+㏒a³\b²+........
Answers
Answer:
log [ a^{ ( n² + n )/2 } ] / [ b^{ ( n² - n )/2 } ]
Step-by-step explanation:
log a + log a²/b + log a³/b² + ..............
It can be written as
log a¹/b⁰ + log a²/b¹ + log a³/b² + ....... upto nth term log aⁿ / bⁿ⁻¹
From this we can understand that power of ' a ' and 'b' are increasing uniformly. So we can say that they are in AP
= log a + log a²/b + log a³/b² + ........ log aⁿ/bⁿ⁻¹
Using Product rule log a + log b = log ab
= log ( a × a² × a³ ........ aⁿ ) / ( b × b² × b³ ..... bⁿ⁻¹ )
Using yᵃ × yᵇ = yᵃ ⁺ ᵇ
= log { a^( 1 + 2 + 3 + ..... n ) } / { b^( 1 + 2 + 3 + ..... n-1 ) }
Now using Sum of n terms of AP formula for powers
= log [ a^{ n/2 × ( 1 + n ) } ] / [ b^{ ( n - 1 )/2 × ( 1 + n - 1 ) } ]
= log [ a^{ ( n² + n )/2 } ] / [ b^{ ( n² - n )/2 } ]
Hence we found the required answer.
ANSWER:
Given
AP = log a + log a²/b + log a³/b² + .........
♦ Using
- b⁰ = 1
- a = a¹
- b = b¹
We get
→ log a¹/b⁰ + log a²/b¹ + log a³/b²
Upto nth term
→ log a¹/b⁰ + log a²/b¹ + log a³/b² +....+ log aⁿ/bⁿ-¹
We can understand that a/b is increasing uniformly
Using
♦ log a + log b = log ab
→ log [(a¹/b⁰)(a²/b¹)(a³/b²) ......... (aⁿ/bⁿ-1)
→ log [(a¹ × a² × a³ ..... aⁿ)/(b⁰ × b¹ × b² × ...... × bⁿ-¹)
Using
aⁿ × a^m = a^(m + n)
→ log [(a¹+²+³+……ⁿ)/(b⁰+¹+²+……ⁿ-¹)
Using
♦ Sn = n/2[2a + (n - 1)d]
→ log [a^{ n/2 x (1+ n ) }]/[b^{ ( n - 1)/2 x (1+n-1)}]
→ log (a^{(n² + n )/2}]/[b^{(n² - n )/2]]