Math, asked by ikshakalletr, 10 months ago

Find the sum of first twenty terms of arithmetic series 2+7+12+............... using suitable formula

Answers

Answered by OkuraZeus
3

Answer:

990

Step-by-step explanation:

This is an arithmatic series.

It has common diff, d = 5

and first term, a1 = 2

Sum of n arithmatic terms is given by,

S_n

= (n/2)(2a1 + (n - 1)d)

Here, n = 20

S_20

= 10(4 + 19*5)

= 10(99)

= 990

Answered by BrainlyConqueror0901
64

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{s_{20}=990}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:\implies A.P = 2 + 7 + 12+...... \\  \\  \tt: \implies No. \: of \: terms  = 20\\  \\  \red{\underline \bold{To \: Find :}}  \\  \tt:  \implies Sum \: of \: 20 \: terms =?

• According to given question :

 \tt \circ \: First  \: term=2 \\  \\  \tt \circ  \: Common \: difference = 5 \\  \\  \tt \circ \: No. \: of \: terms = 20 \\  \\  \bold{As \: we \: know \: that} \\  \tt: \implies   s_{n} =  \frac{n}{2}  \bigg(2a +( n - 1)d \bigg) \\  \\  \tt: \implies   s_{20} = \frac{20}{2} \times  \bigg(2  \times 2 + (20 - 1) \times 5 \bigg) \\  \\  \tt: \implies   s_{20} =10 \times (4 + 95) \\  \\  \tt: \implies   s_{20} =10 \times 99 \\  \\ \green{\tt: \implies   s_{20} =990 } \\  \\   \green{\tt \therefore Sum \: of \: 20 \: terms \: is \: 990}

Similar questions