find the sum of gp
√3, 1,1÷√3,.......to 7 elements
Answers
Answer:
The sum of 10 terms of the GP is S_{10}=121(1+\sqrt3)S10=121(1+3)
Step-by-step explanation:
Given : GP series 1+\sqrt3+3+...1+3+3+...
To find : The sum of 10 terms of GP?
Solution :
The geometric series is in the form a,ar,ar^2,ar^3,...a,ar,ar2,ar3,...
Where, a is the first term and r is the common ration.
In the given, GP series 1+\sqrt3+3+...1+3+3+...
First term is a=1
Common ratio is r=\sqrt{3}r=3
The sum formula of GP series is
S_n=\frac{a(1-r^n)}{1-r}Sn=1−ra(1−rn)
Substituting all the values, n=10
S_{10}=\frac{1(1-\sqrt{3}^{10})}{1-\sqrt{3}}S10=1−31(1−310)
S_{10}=\frac{1(1-243)}{1-\sqrt{3}}S10=1−31(1−243)
S_{10}=\frac{-242}{1-\sqrt{3}}S10=1−3−242
Rationalize,
S_{10}=\frac{-242}{1-\sqrt{3}}\times \frac{1+\sqrt3}{1+\sqrt3}S10=1−3−242×1+31+3
S_{10}=\frac{-242(1+\sqrt3)}{1^2-(\sqrt{3})^2}S10=12−(3)2−242(1+3)
S_{10}=\frac{-242(1+\sqrt3)}{1-3}S10=1−3−242(1+3)
S_{10}=\frac{-242(1+\sqrt3)}{-2}S10=−2−242(1+3)
S_{10}=121(1+\sqrt3)S10=121(1+3)
Therefore, The sum of 10 terms of the GP is S_{10}=121(1+\sqrt3)S10=121(1+3)
Answer:
give me 5 star ⭐ for my answer