Math, asked by mehak855, 2 months ago

find the sum of he geometric series 3+6+12+..+1536

Answers

Answered by ʝεɳყ
82

Solution :

 \\  \\  \\   \tt \longrightarrow \: 3 + 6 + 12 + ..+ 1536 \\  \\  \\   \tt  \: here  \: \: a \:  = 3\\  \\  \\   \tt \longrightarrow \: r \:  =  \dfrac{6}{3} \\  \\  \\   \tt \longrightarrow \: r \:  =  \: 2\\  \\  \\   \tt \: now \:  \: we \: \:  have \:  \: to \: \:  find \:  \: the \:  \: value  \: \: of \:  \: n  \\  \\  \\  \tt \: so \: \: we \:  \: have \:  \: a = 3 \: , \: r \:  = 2\\  \\  \\ \tt \longrightarrow \:  t_{n} \:  =  \: 1536\\  \\  \\ \tt \longrightarrow \:  {ar}^{n - 1}  \:  =  \: 1536\\  \\  \\ \tt \longrightarrow \:3 {(2)}^{n - 1}  \:  = 1536\\  \\  \\ \tt \longrightarrow \: {2}^{n - 1}  \:  = \: 512\\  \\  \\ \tt \longrightarrow \: {2}^{n - 1} \:  =  \:  {2}^{9} \\  \\  \\ \tt \longrightarrow \: n - 1 \:  =  \: 9\\  \\  \\ \tt \longrightarrow \: n \:  =  \: 9 + 1\\  \\  \\ \tt \longrightarrow \: n  =  \: 10\\  \\  \\ \tt so \:  \: now \:  \: we \:  \: have \:  \: n = 10 \: , a = 3 \: , r  = 2\\  \\  \\ \tt \: by \:  \: using \:  \: formula, \\  \\  \\ \tt \longrightarrow \: s_{n}  \:  =  \dfrac{a( {r}^{n} - 1 )}{(r - 1)} \\  \\  \\ \tt \longrightarrow \: s_{n}  \:  =  \:  \dfrac{3( {2}^{10} - 1) }{2 - 1} \\  \\  \\ \tt \longrightarrow \: s_{n}  \:  = \:  3(1024 - 1)\\  \\  \\ \tt \longrightarrow \: s_{n}  \:  =  \: 3 \times 1023\\  \\  \\ \tt \longrightarrow \: s_{n}  \:  =  \: 3069 \:  \:  \:

•°• Hence, The answer is 3069

Similar questions