Find the sum of i^(1)+i^(2)+i^(3)+......+i^(99).
Answers
Answered by
23
Answer:
- i¹ = i
- i² = -1
- i³ = -i
- i⁴ = 1
Now we know that,
⇒ i + i² + i³ + i⁴ = i - 1 - i + 1 = 0
Similarly this pattern continues for every 4 consecutive terms after this series.
⇒ i + i² + i³ + .... i⁹⁶ = 0
⇒ i⁹⁷ + i⁹⁸ + i⁹⁹ = i - 1 - i
⇒ i⁹⁷ + i⁹⁸ + i⁹⁹ = -1
Therefore the Sum of all terms from i to i⁹⁹ is -1.
Answered by
8
[i¹ = i],
[i² = -1]
[i³ = -1]
[i^4 = 1]
Hence, [i + i² + i³ + i^4 = i + 1 + i + 1 = 0]
.•. 4 consecitive term
So,
[i + i² + i³ + till (i^96) = 0]
[i^97 + i^98 + i^99 = i - 1 - 1]
[i^97 + i^98 + i^99 = -1]
.•. {i^99 = -1}
__[Answer]
Similar questions