Math, asked by vijayjsr01, 8 months ago

find the sum of infinity series 3+5.1/4+7.1/4^2....​

Answers

Answered by VishnuPriya2801
46

Answer:-

Given

AGP is 3 + 5 * 1/4 + 7 * 1/4²....

3 , 5 , 7 ... are in AP

a = 3

→ d = 5 - 3

d = 2

1 , 1/4 , 1/4² ... are in GP.

r = (1/4)/1

r = 1/4

We know that,

 \sf Sum\: of \:an\: infinite \:AGP\:– \:S_{\infty}  = \dfrac{a}{1 - r} + \dfrac{dr}{(1 - r)^2 }

Hence,

 \sf \implies \: S _{ \infty } =  \dfrac{3}{1 -  \dfrac{1}{4} }  +  \frac{  {2}  \times  \frac{1}{4}  }{ \big(1 -  \dfrac{1}{4} \big)  ^{2} }  \\  \\  \implies \sf \: S _{ \infty } =  \dfrac{3}{ \frac{4 - 1}{4} }  +  \frac{ \frac{1}{2} }{ (\frac{4 - 1}{4}) ^{2}  }  \\  \\  \implies \sf \: S _{ \infty } =  \frac{3}{3}  \times 4 +  \frac{1}{2}   \times  \frac{{4 }^{2} }{ {3}^{2} }  \\  \\ \implies \sf \: S _{ \infty } = \: 4 +  \frac{8}{9}  \\  \\ \implies \sf \: S _{ \infty } = \:  \frac{36 + 8}{9}  \\  \\ \implies \sf  \large S _{ \infty } = \frac{44}{9}

Therefore, the sum of the given AGP is 44/9.

Answered by EnchantedGirl
20

\underline{\underline{\blue{Given:-}}}

\\

GP : - 3 + 5 × 1/4 + 7 ×1/4²....

\\

• 3 , 5 , 7 ... are in AP

\\

Here, a = 3

\\

→ d = 5 - 3

→ d = 2

\\

• 1 , 1/4 , 1/4² ... are in GP.

\\

r = (1/4)/1

→ r = 1/4

\\

We know :

\sf{ \boxed{\pink{\underline{Sum\: of \:an\: infinite \:GP\:– \:S_{\infty} = a/1 - r+ dr/(1 - r)^2 }}}}

Therefore,

\begin{gathered}\sf ➝\: S _{ \infty } = \dfrac{3}{1 - \dfrac{1}{4} } + \frac{ {2} \times \frac{1}{4} }{ \big(1 - \dfrac{1}{4} \big) ^{2} } \\ \\ ➝\sf \: S _{ \infty } = \dfrac{3}{ \frac{4 - 1}{4} } + \frac{ \frac{1}{2} }{ (\frac{4 - 1}{4}) ^{2} } \\ \\ →\sf \: S _{ \infty } = \frac{3}{3} \times 4 + \frac{1}{2} \times \frac{{4 }^{2} }{ {3}^{2} } \\ \\ ➝\sf \: S _{ \infty } = \: 4 + \frac{8}{9} \\ \\ ➝\sf \: S _{ \infty } = \: \frac{36 + 8}{9} \\ \\ ➜ \sf \large S _{ \infty } = \frac{44}{9}\end{gathered}

Hence, \underline{\orange{The \: sum \: of  given \: GP\: is \: 44/9.}}

__________________________

Similar questions