Math, asked by syedvali5, 9 months ago

Find the sum of integers between 100 and 500 that are divisible by 9.​

Answers

Answered by Anonymous
35

\bf{\Huge{\boxed{\tt{\purple{ANSWER\::}}}}}

\bf{\Large{\underline{\bf{Given\::}}}}

The integers between 100 & 500 that are divisible by 9.

\bf{\Large{\underline{\bf{To\:Find\::}}}}

The sum.

\bf{\Large{\underline{\tt{\pink{Explanation\::}}}}}

The integers between 100 & 500 divisible by 9  are 108, 117, 126.........,495.

\bf{Let\:the\:Arithmetic\:progression}\begin{cases}\sf{First\:term\:be\:=\:(a)}\\ \sf{Common\:difference\:=\:(d)}\\ \sf{Number\:of\:terms\:=\:(n)}\\ \sf{Last\:term\:=\:(l)}\end{cases}}

We have,

a = 108

d = 9

l = 495

According to the question :

\implies\sf{an\:=\:a+(n-1)d}

\implies\sf{495\:=\:108+(n-1)9}

\implies\sf{495\:=\:108+9n-9}

\implies\sf{495\:=\:9n+99}

\implies\sf{9n\:=\:495-99}

\implies\sf{9n\:=\:396}

\implies\sf{n\:=\:\cancel{\frac{396}{9} }}

\implies\sf{\red{n\:=\:44}}

__________________________________

We know that formula of the sum of last term, we get;

\bf{\Large{\boxed{\sf{Sn\:=\:\frac{n}{2} (a+l)}}}}}

So,

\longmapsto\sf{Sn\:=\:\cancel{\frac{44}{2}} (108+495)}

\longmapsto\sf{Sn\:=\:22(108+495)}

\longmapsto\sf{Sn\:=\:22(603)}

\longmapsto\sf{Sn\:=\:(22*603)}

\longmapsto\sf{\red{Sn\:=\:13266}}

Thus,

\bf{\Large{\boxed{\rm{The\:sum\:of\:an\:A.P.\:is\:13266}}}}}

Answered by sakshisingh27
2

Answer:

hiii

buddy your answer is

Attachments:
Similar questions