Math, asked by Elija2487, 1 year ago

Find the sum of lower limit of modal class and median of the following data: 30-40......25, 40-50......30, 50-60...16, 60-70...19, 70-80....17, 80-90.....18 ?

Answers

Answered by nain31
3
 \begin {array}{|c|c|} \cline{1-2} Data <br />&amp;frequency \\ \cline{1-2} 30-40 &amp;25 \\ \cline{1-2}40-50&amp;30 \\\cline{1-2}50-60&amp;16 \\\cline{1-2}60-70&amp;19 \\\cline{1-2}70-80&amp;17 \\\cline{1-2}80-90&amp;18 \\ \cline{1-2}Total \: frequency&amp;125\\ \cline{1-2}\end{array}

 \mathsf{Since, \:  frequency  \: is  \: odd \: median \: will \: be}

 \huge \boxed{median = \dfrac{{n +1}^{th}}{2} term}

 \mathsf{median = \dfrac{{125 +1}^{th}}{2} term}

 \mathsf{median = \dfrac{{126}^{th}}{2} term}

 \mathsf{median = 68 term}

 \mathsf{median= 19}


 \mathsf{For \: lower \: quatile,}

 \huge \boxed{lower \: quatile = \dfrac{1}{4}\times {n +1}^{th}term}

 \mathsf{lower \: quatile = \dfrac{1}{4}\times {126}^{th}term}

 \mathsf{lower \: quatile = 31.5term}

 \mathsf{lower \: quatile = 25}
Similar questions