Math, asked by mythpat51, 2 days ago

Find the sum of money on which the difference between compound interest and simple interest at the rate of 10% per annum for 2 years is 500.​

Answers

Answered by Anonymous
64

Given :

  • ➻ Principal = Rs. 500
  • ➻ Rate = 10 %
  • ➻ Time = 2 years

{\underline{\rule{200pt}{3pt}}}

To Find :

  • ➻ Find the sum of money at simple interest and compound interest.
  • ➻ Find the difference.

{\underline{\rule{200pt}{3pt}}}

Solution :

~ Formula Used :

\large{\blue{\bigstar}} \: \: {\underline{\boxed{\color{red}{\sf{ Simple \: Interest \: = \dfrac{Principal \times Rate \times Time}{100}}}}}}

\large{\blue{\bigstar}} \: \: {\underline{\boxed{\color{red}{\sf{ Compound \: Interest \: = Principal \bigg\lgroup 1 + \dfrac{Rate}{100} \bigg\rgroup ^{Time} - Principal }}}}}

\qquad{━━━━━━━━━━━━━━━━━━━━━}

~ Calculating the Simple Interest :

{\longmapsto{\qquad{\sf{ S.I = \dfrac{ P \times R \times T }{100}}}}} \\ \\ \ {\longmapsto{\qquad{\sf{ S.I = \dfrac{500 \times 10  \times 2}{100}}}}} \\ \\ \ {\longmapsto{\qquad{\sf{ S.I = \dfrac{500 \times 20}{100}}}}} \\ \\ \ {\longmapsto{\qquad{\sf{ S.I = \cancel\dfrac{ 10000 }{ 100 }}}}} \\ \\ \ {\qquad{\textsf{ Simple \: Interest \: = {\green{\sf{ ₹ \: 100 }}}}}}

\qquad{━━━━━━━━━━━━━━━━━━━━━}

~ Calculating the Compound interest :

{\longmapsto{\qquad{\sf{ C.I = P \bigg\lgroup 1 + \dfrac{R}{100} \bigg\rgroup ^T - P }}}} \\ \\ \ {\longmapsto{\qquad{\sf{ C.I = 500 \bigg\lgroup 1 + \dfrac{10}{100} \bigg\rgroup ^2 - 500 }}}} \\ \\ \ {\longmapsto{\qquad{\sf{ C.I = 500 \bigg\lgroup \cancel\dfrac{110}{100} \bigg\rgroup ^2 - 500 }}}} \\ \\ \ {\longmapsto{\qquad{\sf{ C.I = 500 \bigg\lgroup 1.10 \bigg\rgroup ^2 - 500 }}}} \\ \\ \ {\longmapsto{\qquad{\sf{ C.I = 500 \times 1.10 \times 1.10 - 500 }}}} \\ \\ \ {\longmapsto{\qquad{\sf{ C.I = 500 \times 1.21 - 500 }}}} \\ \\ \ {\longmapsto{\qquad{\sf{ C.I = 605 - 500 }}}} \\ \\ \ {\qquad{\textsf{ Compound Interest = {\pink{\sf{ ₹ \: 105 }}}}}}

\qquad{━━━━━━━━━━━━━━━━━━━━━}

~ Calculating the Difference :

{\longmapsto{\qquad{\sf{ Difference = C.I - S.I }}}} \\ \\ \ {\longmapsto{\qquad{\sf{ Difference = ₹ \: 105 - ₹ \: 100 }}}} \\ \\ \ {\qquad{\textsf{ Difference between the Interests = {\blue{\sf{ ₹ \: 5 }}}}}}

\qquad{━━━━━━━━━━━━━━━━━━━━━}

Therefore :

❝ Difference between both the interests is 5 .❞

{\underline{\rule{300pt}{9pt}}}

Answered by XxitzZBrainlyStarxX
21

Question:-

Find the sum of money on which the difference between compound interest and simple interest at the rate of 10% per annum for 2 years is 500.

Given:-

  • Principal (P) = ₹500.

  • Rate (R) = 10%.

  • Time (T) = 2 years.

To Find:-

  • The sum of money on Simple Interest and Compound Interest.

  • To Find Difference Between the Compound Interest and Simple Interest.

Solution:-

1st We Find Simple Interest:-

Formula Used:-

\large{\pink{\bigstar}} \: \: {\underline{\boxed{\color{blue}{\sf{ Simple \: Interest \: = \dfrac{Principal \times Rate \times Time}{100}}}}}}

Calculating the Simple Interest.

 \sf \large  \longmapsto  \:  S.I =  \frac{500 \times 10 \times 2}{100}

\sf \large \longmapsto S.I =  \frac{500 \times 100}{100}

\sf \large \longmapsto S.I =  \frac{10,0{{ \cancel{00 }}}}{1{{ \cancel{00} }}}

S.I = 100.

 \sf \large \longmapsto \red{ \boxed { \sf \: Simple \:  Interest = ₹100.}}

_______________________________________

2nd We Find Compound Interest:-

Formula Used:-

\sf \large{\pink{\bigstar}} \: \: {\underline{\boxed{\color{blue}{\sf{Compound \: Interest \: = Principal \bigg(1 +  \frac{Rate}{100}  \bigg) {}^{Time} \:  -  Principal}}}}}

Calculating the Compound Interest.

 \sf \large \longmapsto C.I = P \bigg(1 +  \frac{R}{100}  \bigg) {}^{T}  - P

\sf \large \longmapsto C.I = 500 \bigg(1 +  \frac{10}{100}  \bigg) {}^{2}  - 500

\sf \large \longmapsto C.I = 500  \bigg( {{ \cancel{\frac{110}{100}   }}}\bigg) {}^{2}  - 500

\sf \large \longmapsto \: C.I = (1.1) {}^{2}  - 500

 \sf \large \longmapsto C.I = 500 \times 1.1 \times 1.1 - 500

 \sf \large \longmapsto C.I = 500 \times 1.21 - 500

 \sf \large \longmapsto C.I \: 605  -  500

C.I = 105.

\sf \large \longmapsto \green{ \boxed { \sf \: Compound \:  Interest = ₹105.}}

_______________________________________

Calculating the Difference.

Difference = Compound Interest Simple Interest

= 105 100

= 5.

Answer:-

 \sf   \blue{ \therefore \: Difference \:  Between  \: compound \:  } \\  \sf \blue{interest \:  and \:  simple interest \:  = \red { ₹5.}}

Hope you are have satisfied.

Similar questions