Math, asked by Questionser, 1 year ago

Find the sum of n terms and also Sum of S till infinity

S=(3/5)+(5/15)+(7/45)+(9/135)​

Answers

Answered by sahildhande987
38

\huge\star{\boxed{\underline{\red{\tt{Answer}}}}}\star

Class 11

Sequence and Series

____________________________________________

\huge\star\star\star\star\star\star\star\star\star

s =  \frac{3}{5}  +  \frac{5}{15}  +  \frac{7}{45}  +  \frac{9}{135} ........... \infty  \\  \\  \frac{s}{3}  =  \frac{3}{15}  +  \frac{5}{45}  +  \frac{7}{135} ................. \infty   \\  \\  \frac{2s}{3}  =  \frac{3}{5}  +   \frac{2}{15}  +  \frac{2}{45} .................. \infty  \\  \\  \frac{2s}{3}  =  \frac{3}{5}  +  \frac{2}{15} (1 +  \frac{1}{3}  +  \frac{1}{ {3}^{2} }) \\ now \: we \: know \: that \: sum \: of \: infinity \: is \:  \frac{a}{1 - r}   \\  \\ therefore \\  \frac{2s}{3}  =  \frac{3}{5}  +  \frac{2}{15}  \times ( \frac{1}{1 -  \frac{1}{3} } ) \\  \frac{2s}{3}  =  \frac{3}{5}  +  \frac{2}{15} ( \frac{3}{2} ) \\  \frac{2s}{3}  =  \frac{3}{5}  +  \frac{1}{5}  \\  \frac{s}{3}  =  \frac{2}{5}   \\ s \infty  =  \frac{6}{5}

\huge\star\star\star\star\star\star\star\star\star

____________________________________________

For sum of n terms

____________________________________________

\frac{2S}{3}=\frac{3}{5}+\frac{2}{15}(1+\frac{1}{3}+\frac{1}{\{3}^{2}}........)-\frac{2n-1}{5\times \{3}^{n}} \\ \\ \frac{2s}{3}=\frac{3}{5}+\frac {2}{15} +(\frac{\{(\frac{1}{3})}^{n-1}{\frac{1}{3} -1} - """"""""" \\ \\ \frac{2s}{3}=\frac{3}{5}+\frac{1-\frac{1}{{3}^{n-1}}}{5}- """""""""""" \\ \\ S=\frac{9}{10}+\frac{3}{10}+(1-\frac{1}{{3}^{n-1}})-"""""""""""

___________________________________________

\huge\star{\blue{\mathfrak{Thank\:You}}}\star

____________________________________________

Answered by walnutchocochip
2

Answer:

its 6/5

Step-by-step explanation:

hope u got ur ans

Similar questions