Math, asked by anjurajput6587, 1 year ago

Find the sum of n terms of the series (4-1/n)+(4-2/n)+(4-3/n)

Answers

Answered by mastermindmuru
6
 \frac{4 - 1}{n} + \frac{4 - 2}{n} + \frac{4 - 3}{n}
 \frac{3}{n } + \frac{2}{n } + \frac{1}{n}
Answered by pinquancaro
1

Answer:

The sum of n terms series is S_n=\frac{7n-1}{2}

Step-by-step explanation:

Given : Series (4-\frac{1}{n})+(4-\frac{2}{n})+(4-\frac{3}{n})+...

To find : Find the sum of n terms of the series ?

Solution :

The Series (4-\frac{1}{n})+(4-\frac{2}{n})+(4-\frac{3}{n})+... is an arithmetic series.

The first term is a=4-\frac{1}{n}

The common difference is d=4-\frac{2}{n}-(4-\frac{1}{n})=-\frac{1}{n}

The sum formula of A.P is given by,

S_n=\frac{n}{2}[2a+(n-1)d]

Substitute the value in the formula,

S_n=\frac{n}{2}[2(4-\frac{1}{n})+(n-1)(-\frac{1}{n})]

S_n=\frac{n}{2}[2\times 4-\frac{2}{n}-\frac{n}{n}+\frac{1}{n}]

S_n=\frac{n}{2}[8-\frac{2}{n}-1+\frac{1}{n}]

S_n=\frac{n}{2}[7-\frac{1}{n}]

S_n=\frac{7n}{2}-\frac{1}{2}

S_n=\frac{7n-1}{2}

Therefore, The sum of n terms series is S_n=\frac{7n-1}{2}

Similar questions