CBSE BOARD X, asked by shivarama0206, 1 year ago

Find the sum of n terms of the series (4-1/n)+(4-2/n)...

Answers

Answered by KarthikKiran
15

a =  4 -   \frac{1}{n}  \\ a2 = 4 -  \frac{n}{2} \\ d = a2 - a  \\  d =  4 - \frac{2}{n}  - 4 +  \frac{1}{n}  \\ d =  \frac{ - 1}{n}

sum =  \frac{n}{2} (2a + (n - 1)d) \\  =  \frac{n}{2} (2(4 -  \frac{1}{n}) + (n - 1)( \frac{ - 1}{n})

on \: taking \:  \frac{1}{n}   \: common

we get,

 \frac{n}{2} ( \frac{ 1}{n})(2(4  - 1) + (n - 1)( - 1))

n and 1/n gets cancelled

 \frac{1}{2} (6 + 1 - n) \\  sum=  \frac{1}{2} (7 - n)

Therefore sum of the given progression is

 \frac{1}{2} (7 - n)

Similar questions