find the sum of n terms of the series (x+y)^2, X^2+Y^2
Answers
Answered by
0
Arithmetic progression.
Sum= [limit(first number+last number)]/2
Therefore
Sum= [2(x+y)^2+x^2+y^2]/2
Sum= (x+y)^2 + x^2 + y^2
Sum= x^2 + y^2 +2xy + x^2 + y^2
Sum= 2x^2 + 2y^2 + 2xy
dividing all terms by 2
we get:
Sum= x^2 + y^2 + xy
Sum = (x+y)^2 [Ans.]
Sum= [limit(first number+last number)]/2
Therefore
Sum= [2(x+y)^2+x^2+y^2]/2
Sum= (x+y)^2 + x^2 + y^2
Sum= x^2 + y^2 +2xy + x^2 + y^2
Sum= 2x^2 + 2y^2 + 2xy
dividing all terms by 2
we get:
Sum= x^2 + y^2 + xy
Sum = (x+y)^2 [Ans.]
Similar questions