Math, asked by ks1197970, 29 days ago

find the sum of no. from 98 to 400 which are divisible by 4 giving reminder 2​

Answers

Answered by divyajadhav66
34

\huge{\mathcal {\purple {A}\green {n}\pink {s}\blue {w}\purple{e}\green {r}}}

The numbers lying between 200 and 400 which are divisible by 7 are 203,210,217,...399

∴ First term,  a=203

Last term, an=399 & Common difference, d=7

Let the number of terms of the A.P. be n.

∴an=399=a+(n−1)d⇒399=203+(n−1)7⇒7(n−1)=196⇒n−1=28⇒n=29∴S29=229(203+399)=229(602)=(29)(301)=8729

Thus, the required sum is 8729

\huge\sf{\orange{\underline{\pink{\underline{\pink{\underline{❥thanks:-}}}}}}}

\huge\sf{\orange{\underline{\pink{\underline{\blue{\underline{❥BYBY࿐:-}}}}}}}

Answered by muskansingh3707126
0

Answer:

\huge{\mathcal {\purple {A}\green {n}\pink {s}\blue {w}\purple{e}\green {r}}}

The numbers lying between 200 and 400 which are divisible by 7 are 203,210,217,...399

∴ First term,  a=203

Last term, an=399 & Common difference, d=7

Let the number of terms of the A.P. be n.

∴an=399=a+(n−1)d⇒399=203+(n−1)7⇒7(n−1)=196⇒n−1=28⇒n=29∴S29=229(203+399)=229(602)=(29)(301)=8729

Thus, the required sum is 8729

\huge\sf{\orange{\underline{\pink{\underline{\pink{\underline{❥thanks:-}}}}}}}

\huge\sf{\orange{\underline{\pink{\underline{\blue{\underline{❥Muskan࿐:-}}}}}}}

Similar questions