Math, asked by vaishu012390, 11 months ago

find the sum of numers between 3 to 30 which are divisible by 3​

Answers

Answered by birendrakumarrana82
0

Answer:

3,6,9,12,15,16,18,21,24,27,30 done

Answered by Anonymous
7

\huge{\underline{\underline{\bf{Solution}}}}

\rule{200}{2}

\tt given\begin{cases}  \sf{A.P : 6, 9, 12 .......27} \\  \sf{First \: term \: (a) = 6} \\ \sf{Common \: Difference \: (d) = 3} \\ \\ \sf{Last \: term \: (An)}\end{cases}

\rule{200}{2}

\Large{\underline{\underline{\bf{To \: Find :}}}}

We have to find their sum.

\rule{200}{2}

\Large{\underline{\underline{\bf{Explanation :}}}}

We know that,

\Large{\star{\boxed{\sf{A_n = a + (n - 1)d}}}}

\sf{\mapsto 27 = 6 + (n - 1)3} \\ \\ \sf{\mapsto 27 - 6 = (n - 1)3} \\ \\ \sf{\mapsto 21 = (n - 1)3} \\ \\ \sf{\mapsto \frac{\cancel{21}}{\cancel{3}} = n - 1} \\ \\ \sf{n = 8}

\rule{150}{2}

Now,

\Large{\star{\boxed{\sf{S_n = \frac{n}{2} (a + l)}}}}

\sf{\mapsto S_n = \frac{\cancel{8}}{\cancel{2}} (6 + 27)} \\ \\ \sf{\mapsto S_n = 4 \times 33} \\ \\ \sf{\mapsto S_n = 132}

\Large{\boxed{\sf{S_n = 132}}}

\sf{\therefore \: Sum \: is \: 132}

Similar questions
Science, 11 months ago