Math, asked by ganesh231003, 11 months ago

find the sum of series 0.7+0.77+0.777+.... upto n terms​

Answers

Answered by IamIronMan0
8

Answer:

s = 0.7 + 0.77 + 0.777 + ...... \\  \\  = 7(0.1 + 0.11 + 0.111 + ......) \\  \\  =  \frac{7}{9}  \times 9(0.1 + 0.11 + 0.111 + .....) \\  \\  =  \frac{7}{9} (0.9 + 0.99 + 0.999 + ....) \\  \\  =  \frac{7}{9} (10 - 0.1 + 100 - 0.01 + 1000 - 0.001...) \\  \\  =  \frac{7}{9} ((10 + 100 + 1000...) - ( \frac{1}{10}  +  \frac{1}{100}  + ...)

Use formula of sum of n terms of GP

s =  \frac{a( {r}^{n} - 1) }{r - 1}

 \frac{7}{9} ( \frac{10( {10}^{n} - 1) }{10 - 1}  -  \frac{ \frac{1}{10}( {10}^{ - n}  - 1) }{ \frac{1}{10} - 1 } ) \\  \\  =  \frac{7}{9} ( \frac{10( {10}^{n} - 1) }{9}  -  \frac{ 1 - {10}^{ - n}  }{9} ) \\  \\  =  \frac{7}{81} ( {10}^{n + 1}  +  {10}^{ - n}  - 11)

Similar questions