Math, asked by rakha6064, 2 months ago

Find the sum of series 7 + 10 1/2+ 14 + ... .... + 84​

Answers

Answered by XxItzAnvayaXx
11

\boxed {\underline  {\mathbb {FINAL\:ANSWER:-}}}

\boxed{\implies 1046.5}

\boxed {\underline  {\mathbb {GIVEN:-}}}

ap in series is 7+ 10\frac{1}{2}+14+..+84

\boxed {\underline  {\mathbb {TO\:FIND:-}}}

sum of series\ap

\boxed {\underline  {\mathbb {FORMULA\:USED:-}}}

a_n = a+(n-1)d  

S_n=\frac{n}{2}(a+l)

\boxed {\underline  {\mathbb {SOLUTION:-}}}

Here  

ap in series is 7+ 10\frac{1}{2}+14+..+84

or

7,10\frac{1}{2},14..84

As we have given a(first term)=7

So let’s find d(common difference)  

14=7+2d\\14-7=2d\\7=2d\\

d=\frac{7}{2}

now let’s get the n term of ap as last term is 84

a_n = a+(n-1)d  

84=7+(n-1)\frac{7}{2}

84=7+\frac{7n}{2} - \frac{7}{2}

84=\frac{14+7n-7}{2}

84=\frac{7+7n}{2}

84 \times 2 = 7 +7n\\168=7 + 7n\\7n=168-7\\7n=161\\

n=\frac{161}{7}

n=23

hence the ap have total of 23 terms

Now let’s find S_n (sum of ap)

S_n=\frac{n}{2}(a+l)

S_n=\frac{23}{2}(7+84)

S_n=\frac{23}{2}(91)

S_n=\frac{23*91}{2}

S_n=1046.5

Hence sum of the whole ap \boxed{\implies 1046.5}

⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔

here

a=first term

d=common difference

a_n= term\  which \ we \ want\ to\ find

S_n = sum\ of\ ap

l= last term for of series

n= number of that term

Similar questions