Math, asked by rakeshg173757, 8 months ago

Find the sum of series :7+77+777+.........to n term.​

Answers

Answered by Anonymous
11

\huge{\underline{\underline{\red{\bf{Given:}}}}}

  • A series is given 7+77+777+777..........n terms

\rule{200}4

\huge{\underline{\underline{\red{\bf{To\: Find:}}}}}

  • The sum of the series.

\rule{200}4

\huge{\underline{\underline{\red{\bf{Answer:}}}}}

Given series is 7+77+777+7777+......n terms.

Let the sum of series be demoted by S.

\sf{\implies S = 7+77+777+7777+......n .}

\sf{\implies S = 7 ( 1 + 11 + 111 + 1111 + .......n ).}

\sf{\implies S = \dfrac{7}{9} \times 9( 1 + 11 + 111 + 1111 + ... n ).}

\sf{\implies S =  \dfrac{7}{9} \times( 9 + 99 + 999 + 9999 + ...n ).}

\sf{\implies S =\dfrac{7}{9} \times [(10-1) + (100-1)+(1000-1)+......n ]}

\sf{\implies S = 7/9[10+100+1000+....+n -1-1-1...-n]}

Now this 10+100+1000 .....n are in GP,

And sum of n terms of GP is given by ,

\large{\underline{\boxed{\red{\bf{\leadsto S_{n}=\dfrac{ a(r^{n}-1)}{r-1}}}}}}

where ,

  • a is first term.
  • r is common ratio.
  • n is number of terms.

Using this formula , we have ;

⇒S = 7/9 [ \sf{\dfrac{10(10^n-1)}{9}} - n].

\purple{\bf{  \longmapsto S =\dfrac{70(10^n -1)}{81}-\dfrac{7n}{9}}}

Similar questions