Math, asked by sshaurya1310, 8 months ago

Find the sum of the A.P. 34 +32 +30 + ...+10

Answers

Answered by Linisa14
39

Answer:

The sum is 286

Step-by-step explanation:

Arithmetic Series : 34+ 32+30+.....+10

Here, a=34 ,

d=32-34=-2

l=10

LET THE GIVEN SERIES CONTAINS n TERMS

an=10

34+(n-1) ×(-2) =10 [an=a+(n-1)×d]

-2n+36= 10

-2n= 10-36= -26

n=13

REQUIRED SUM =13/2 × (34+10)[Sn= n/2(a+l)]

=32/2 × 44

=286

Answered by hdika
4

Answer: 286

Step-by-step explanation:

here we have ; a = 34 ,

                       d = a2 - a1

                          = 32 - 34

                        d = - 2

                       nth term = 10

             by formula of nth term i.e, nth term = a + (n - 1) d

  substituting all values we get ,          10 = 34 + (n - 1) - 2

                                                               10 = 34 + -2n + 2

                                                            10 - 34 -2 = - 2n

                                                             10 - 36 = -2n

                                                                   - 26 = -2n

                                                                 n = -26 / -2

                                                                 n = 13

now by formula to find sum of an A.P i.e, sum of n terms = n/2 [a + nth term]

substituting all values we get ,               sum of n terms   = 13/2[34 + 10]

                                                                   sum of n terms = 13/2(44)

                                                                  sum of n terms = 13 *22

                 by solving we will get           sum of n terms =  286 which is our required answer

I HOPE THIS WILL HELP YOU

THANK YOU

Similar questions