Math, asked by kshekhawat47186, 8 months ago

Find the sum of the A.P 34+32+30+___+10​

Answers

Answered by Liyutsararename
0

Answer:

sum of the A.P i.e., the sum of 13(n) terms is 286.

Step-by-step explanation:

a(first term) = 34

d(common difference) = -2[32-34]

L(Last term) = 10

L = a+(n-1)d

10 = 34+(n-1)(-2)

10-34 = (n-1)(-2)

-24 = -2n+2

-24-2 = -2n

-26 = -2n

26 = 2n

13 = n

there are total 13 terms in the A.P

Sn = n/2[L+ a]

as n=13

S13 = 13/2 [ 10+34] => 13/2[44] => 13 * 22 = 286

so the sum of 13(n) terms is 286.

verifying(checking) :

if u want to check that my answer is correct then u can add :

34+32+30+28+26+24+22+20+18+16+14+12+10 = 286

and there are 13 terms.

good day! :)

hope it helps!

plz mark me as brainliest!

Answered by hdika
0

Answer: 286

Step-by-step explanation:

here we have ; a = 34 ,

                       d = a2 - a1

                          = 32 - 34

                        d = - 2

                       nth term = 10

             by formula of nth term i.e, nth term = a + (n - 1) d

  substituting all values we get ,          10 = 34 + (n - 1) - 2

                                                               10 = 34 + -2n + 2

                                                            10 - 34 -2 = - 2n

                                                             10 - 36 = -2n

                                                                   - 26 = -2n

                                                                 n = -26 / -2

                                                                 n = 13

now by formula to find sum of an A.P i.e, sum of n terms = n/2 [a + nth term]

substituting all values we get ,               sum of n terms   = 13/2[34 + 10]

                                                                   sum of n terms = 13/2(44)

                                                                  sum of n terms = 13 *22

                 by solving we will get           sum of n terms =  286 which is our required answer

I HOPE THIS WILL HELP YOU

THANK YOU

Similar questions