Math, asked by vidhij860, 7 months ago

Find the sum of the A.P. 34 + 32 +30+...+10​

Answers

Answered by SandeepAW
3

Answer:

First term=a=34.

Common difference=d=a2-a1=32-34=-2.

sn=n/2[2a+(n-1)d].

sn=n/2[2(34)+(n-1)(-2)].

sn=n[34-2n+2].

sn=n-2n[34+2].

sn=-1n[36].

sn=-n[36].

I think this is your answer.

Answered by hdika
0

Answer: 286

Step-by-step explanation:

here we have ; a = 34 ,

                       d = a2 - a1

                          = 32 - 34

                        d = - 2

                       nth term = 10

             by formula of nth term i.e, nth term = a + (n - 1) d

  substituting all values we get ,          10 = 34 + (n - 1) - 2

                                                               10 = 34 + -2n + 2

                                                            10 - 34 -2 = - 2n

                                                             10 - 36 = -2n

                                                                   - 26 = -2n

                                                                 n = -26 / -2

                                                                 n = 13

now by formula to find sum of an A.P i.e, sum of n terms = n/2 [a + nth term]

substituting all values we get ,               sum of n terms   = 13/2[34 + 10]

                                                                   sum of n terms = 13/2(44)

                                                                  sum of n terms = 13 *22

                 by solving we will get           sum of n terms =  286 which is our required answer

I HOPE THIS WILL HELP YOU

THANK YOU

Similar questions