find the sum of the AP:1+2+3+4..........+99+100
Answers
Answer:
Step-by-step explanation:
=1+2−3+4+…−99+100
Split this series into 3 as:
S=[1+4+7+...+100]S1+[2+5+8+...+98]S2−[3+6+9+...+99]S3
S1=1+4+7+...+100
This is an AP with A1=1,L1=100,D1=3
Number of terms =N1=L1−A1D1+1=100−13+1=34
S1=N12.[A1+L1]=342.[1+100]=1717
S2=2+5+8+...+98
This is an AP with A2=2,L2=98,D2=3
Number of terms =N2=L2−A2D2+1=98−23+1=33
S2=N22.[A2+L2]=332.[2+98]=1650
S3=3+6+9+...+99
This is an AP with A3=3,L3=99,D3=3
Number of terms =N3=L3−A3D3+1=99−33+1=33
S3=N32.[A3+L3]=332.[3+99]=1683
S=S1+S2−S3=1717+1650−1683=1684
Ans: 1684
Alternate method:
Consider the triplets:
T1=1+2−3=0
T2=4+5−6=3
T3=7+8−9=6
…
T33=97+98−99=96
S=T1+T2+T3+…+T33+100=0+3+6+…+96AP with A= 0, D=3, N=33+100
=332.[0+96]+100=1584+100=1684
hope this helps u