Math, asked by dhanushr2565, 10 months ago

Find the sum of the first 18 terms of an AP 12b, 8b, 4b ............ *



a) 126b

b) -96b

c) 256b

d) -288b

Answers

Answered by mysticd
0

 Given \:A.P: 12b , 8b,4b ,\cdot\cdot\cdot

 First \:term (a_{1}) = 12b

 Common \: differnce (d) = a_{2} - a_{1} \\= 8b - 12 b \\= -4b

 \boxed { \pink { Sum \:of \: n \:terms (S_{n}) = \frac{n}{2} [ 2a + (n-1)d ] }}

 Here, a = 12b, \:d = -4b \:and \:n = 18

 Sum\:of \: 18 \:terms = \frac{18}{2} [ 2\times 12b + (18-1)(-4b) ] \\= 9[24b + 17 \times (-4b)]\\= 9(24b - 68b) \\= 9 \times (-44b) \\= - 396b

Therefore.,

 \red{ Given \:options \:are \:wrong }

 \red{Sum\:of \: 18 \:terms}\\\green {= - 396b}

•••♪

Similar questions