Math, asked by lrkulhari1927, 7 months ago

Find the sum of the first 24 terms of the AP: 8,3,-2….

Answers

Answered by Mihir1001
21

\huge{\underline{\bf\red{QuestiØn} :}}

 \sf Find \: the \: sum \: of \: first \: 24 \: terms \\  \sf of \: the \: AP : 8,3, - 2, .......

\huge{\underline{\bf\blue{SolutiØn}\ :}}

We have,

  • first term,  \sf a_{1} = 8

  • second term,  \sf a_{2} = 3

  • common difference,  \begin{aligned} \sf d & = a_{2} - a_{1} \\ & =3 - 8 \\ &=  - 5 \\ \end{aligned}

  • no. of terms,  \sf n = 24

Hence ,

Sum of first 24 terms,

\begin{aligned}  \\ \quad \sf S_{24}& =  \sf \frac{n}{2} \bigg[a_{1} + (n - 1)d \bigg]  \\  \\ & =  \frac{24}{2} \bigg[8 + (24 - 1)( - 5) \bigg]  \\  \\ & = \frac{ {}^{12}  \ \cancel{24}}{_{1} \ \cancel{2}} \bigg[8 + (24 - 1)( - 5) \bigg]  \\  \\  & = 12[8 + 23( - 5)]  \\  \\  & = 12[8 - 115]  \\  \\  & = 12( - 107) \\  \\  & = \boxed{ \bf{  - 1284}} & & & \end{aligned}

\red{\rule{5.5cm}{0.02cm}}

\Large{ \mid {\underline{\underline{\bf\green{BrainLiest \ AnswEr}}}} \mid }

Similar questions