Find the sum of the first 24 terms of the sequence when nth term is given by an=3+2/3n
Answers
Step-by-step explanation:
Given
Sn = 3n² + 5n
n'th term = 164
To find
the value of m
Solution
\sf \implies S_1 = a_1 = 3(1)^2 + 5(1) = 8⟹S
1
=a
1
=3(1)
2
+5(1)=8
\sf \implies S_2 =3(2)^2 + 5(2) = 22⟹S
2
=3(2)
2
+5(2)=22
\sf \implies S_2 = 22 = a_1+a_2⟹S
2
=22=a
1
+a
2
\sf\implies a_2 = 22 - 8 = 14⟹a
2
=22−8=14
\sf \implies d = a_2 - a_1 = 14-8=6⟹d=a
2
−a
1
=14−8=6
\sf \implies {n}^{th}\: term = 164, \ then \: value \: of \: m?⟹n
th
term=164, thenvalueofm?
\sf \implies {n}^{th} \: term = a+(m-1)d⟹n
th
term=a+(m−1)d
\sf \implies 164 = 8+(m-1)6⟹164=8+(m−1)6
\sf \implies \dfrac{164-8}{6} =m-1⟹
6
164−8
=m−1
\sf \implies \dfrac{156}{6} =m-1⟹
6
156
=m−1
\sf \implies 26 =m-1⟹26=m−1
\sf \implies m= 26+1⟹m=26+1
\sf \implies m = 27⟹m=27
Therefore, 27ᵗʰ term is 164.
Hope it helps