Math, asked by akraam1712, 4 months ago

Find the sum of the first 25 terms of an A.P. who's n^th term is given by 7-3n

Answers

Answered by HèrøSk
55

Step-by-step explanation:

Given:-

\bf a_n = 7-3n, n = 25

To find:-

\bf S_{25} \: = \: ? \:

Solution:-

First find the value of 'a' and 'd'

\large\sf a_1= 7-3n=7-3×1= 4

\large\sf a_2= 7-3×2= 1

\large\sf a_3= 7-3×3= -2

Now,

 ‎ ‎ ‎‎ ‎ ‎ ‎ ‎‎ ‎ ‎ ‎ ‎ ‎‎ ‎ ‎ ‎ ‎ ‎‎ ‎ ‎ ‎\large\sf d = a_2-a_1= 1 - 4 =  - 3

We know that,

\large\red{\boxed{ \mathtt\color{darkblue}{Sum  \: of \:  n \:  terms  \: of  \: A•P = \frac{n}{2} (a + a_n)}}}

\sf\large \:  \: =  \frac{25}{2} (4+7 - 3n)

\sf\large \:  \: =  \frac{25}{2} (11 - 3 \times25 )

\sf\large \:  \: =  \frac{25}{2} (11 - 75)

\sf\large \:  \: =  \frac{25}{\cancel2} \times  (\cancel{64})

\sf\large \:  \: =  25 \times 32

 \large\bf = \:  -  800

\bf\therefore \underline{Sum \: of  \: 25  \: term \:  of  \: an \: } \\  \bf \underline{A.P \: is \:  - 800}


aarivukkarasu: hi
aarivukkarasu: can you please solve my math question
Answered by safathayatt
0

Answer:

Input parameters & values: The number series 2, 4, 6, 8, 10, 12, . . . . , 50. Therefore, 650 is the sum of first 25 even numbers.

Similar questions