Math, asked by arjitgautam5664, 1 year ago

Find the sum of the first 25th term of an ap whose nth term is given by tn=7-3
n

Answers

Answered by Anonymous
0

Hii mate..!!

Here is ur answer..!!


Answer: tn = 7-3n

if n= 1

t1 = 7-3(1)

t1 = 4

if n= 2

t2 = 7-3(2)

t2 = 1

∴ sequence = 4 , 1.......

a = 4

d = 1 - 4 => -3

an = a + (n-1) d

a25 = 4 + ( 25 - 1 ) -3

a25 = 4 + ( 24 ) -3

a25 = 4 - 72

a25 = 68


∴ 25th term of an ap = 68


I HOPE THIS MAY HELP U :)



Answered by Anonymous
4

Required answer:--

 \orange{ \rm \boxed{ \star \: given - }}

 \boxed{ \rm \:a   _{n} = (7n - 3n)}

 \boxed{ \large \rm \to \: to \: find \: out  \implies  \: s_{25} =  {?}}

 \pink{ \boxed{ \rm \:solution:-}}

 \rm \: t _{n}  = (7n - 3n) \implies \: t _{1} = (7 - 3  \times 1) \: and \: t _{2} = (7 - 3 \times 2) = 1 \\  \rm \therefore \: a = 4 \: and \: d = (t _{2} - t  _{1}) = (1 - 4) =  - 3

 \rm \:  \therefore \: sum \: of \: 25 \: terms \: is \: given \: by \\ \rm s _{25} =  \frac{n}{2}  \times   \large( \small \: 2a + (n - 1)d \large) \:  \: where \: n = 25

 =  \large{ \frac{25}{2} }  \times ( \small2   \times 4 + (25 - 1) \times ( - 3)  \large) \:   =  \frac{25}{2 }  \times ( - 64)

 = 25 \times ( - 32) =  - 800

 \large \red{ \boxed{ \rm \: hence \: the \: sum \: of \: first \: 25 \: term \: is - 800}}

Similar questions