Math, asked by cchary698, 2 months ago

Find the sum of the first 40 positive integers divisible by 6​

Answers

Answered by Anonymous
9

Question:-

Find the sum of the first 40 positive integers divisible by 6

\huge\underline{\underline\mathtt\color{hotpink}Answer}

➳ Positive integer which are divisible by 6 are 6 , 12 , 18 , 24 and so on.

Given:-

  • a = 6
  • d = 6

To find:-

  • S40 = ?

_______________

 \large➻s_{40} =  \frac{40}{2} (2 \times 6 + (40 - 1)6)

 \large➻s_{40} = 20(12 + 39 \times 6)

\large➻s_{40} = 20(12 + 234)

\large➻s_{40} = 20 \times 246

\large➻s_{40} = 4920

-----------------------

So the sum of first 40 terms divisible by 6 is 4920.

Similar questions