find the sum of the first 40 positive integers divisible by 6. find the sum of the first 15 multiples of 8. find the sum of the odd number between 0 and 50
Answers
Answer:
Positive integers divisible by 6 are
6,12,18,24,....
since difference is same, it is an AP
We need to find sum of first 40 integers
we can use formula
Sn = (2a + (n-1) d)
here n=40,
a=6,
d=12 - 6 = 6
putting values in formula
Sn = (2 x 6 + (40-1) 6)
= 20 (12 + 39 x 6 )
= 20 (12 +234)
=20 (246)
Sn=4920
Answer:
4952, 960, 625
Explanation:
first 40 positive integers divisible by 6:
6 + 12 + 18 + 24 + 30 + 36 + 42 + 48 + 54 + 60 + 66 + 72 + 78 + 84 + 90 + 96 + 102 + 108 + 114 + 120 + 126 + 132 + 138 + 144 + 152 + 158 + 164 + 170 + 176 + 182 + 188 + 194 + 200 + 206 + 212 + 218 + 224 + 230 + 236 + 242 = 4952
first 15 multiples of 8:
8 + 16 + 24 + 32 + 40 + 48 + 56 + 64 + 72 + 80 + 88 + 96 + 104 + 112 + 120 = 960
odd numbers between 0 and 50:
1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17 + 19 + 21 + 23 + 25 + 27 + 29 + 31 + 33 + 35 + 37 + 39 + 41 + 43 + 45 + 47 + 49 = 625