Math, asked by NK2002, 1 year ago

Find the sum of the first n terms of 8+88+888+8888+.......

Answers

Answered by anish1801
66
8 + 88 + 888 + 8888 +........up to n times
= 8(1) + 8(11) + 8(111) + 8(1111) +........up to n times
= 8{ 1 + 11 + 111 + 1111 + ....... up to n times}
= 8/9{9 + 99 + 999 + 9999 + ..... up to n times}
= 8/9 { (10-1 )+ (100-1) + (1000-1) + (10000-1) + ........up to n times}
= 8/9 { (10 + 100 + 1000 + 10000 +...... n times) - (n×1)}
= 8/9{ ( (10×(10^n -1))/(10-1) ) -n }
8 + 88 + 888 + 8888 + ........ \\  =  \frac{8}{9}( \frac{10 \times ( {10}^{n }  - 1)}{10 - 1} ) \\  =  \frac{80}{81} ( {10}^{n}  - 1)

NK2002: I can't understand the last before step
anish1801: you mean 8/9{ ( (10×(10^n-1))/(10-1) ) - (n×1) } ⬅️this step?? well it's the formula of GP (Geometric Progression)!! if, sum = a+ar+ar^2+ar^3+..... then, sum = a×(r^n-1)/(r-1) . here a=10, r=10.
NK2002: But our teacher has said that sum=a(1-r^n-1)/1-r
anish1801: bro that is the formula when r<1 ! but when r>1 , sum = a(r^n - 1)/(r-1)
Answered by mathdude500
5

Answer:

\boxed{\sf \: 8+ 88 + 888 + 8888 + .. \: n \: terms  =  \: \dfrac{8}{9}\left[\dfrac{10( {10}^{n}  - 1)}{9}  - n \right] \: } \\  \\

Step-by-step explanation:

Given series is

\sf \: 8 + 88 + 888 + 8888 + ... \: n \: terms \\  \\

\sf \:  =  \: 8(1 + 11 + 111 + 1111 + ... \: n \: terms) \\  \\

\sf \:  =  \: \dfrac{8}{9} (9 + 99 + 999 + 9999 + ... \: n \: terms) \\  \\

\sf \:  =  \: \dfrac{8}{9} [(10 - 1) + (100 - 1) + (1000 - 1)  + ... \: n \: terms]\\  \\

\sf \:  =  \: \dfrac{8}{9}[ 10 + 100 + 1000 + .. \: n \: terms) - (1 + 1 + 1 + .. \: n \: terms)] \\  \\

We know,

Sum of n terms of a GP series having first term a and common ratio r is given by

\begin{gathered}\begin{gathered}\bf\: S_n = \begin{cases} &amp;\sf{\dfrac{a( {r}^{n} - 1) }{r - 1} }, \:  \: r \:  \ne \: 1 \\ \\  &amp;\sf{\qquad \: na, \:   \:  \: \: r = 1} \end{cases}\end{gathered}\end{gathered} \\  \\

So, using these results, we get

\sf \:  =  \: \dfrac{8}{9}\left[\dfrac{10( {10}^{n}  - 1)}{10 - 1}  - n \times 1 \right] \\  \\

\sf \:  =  \: \dfrac{8}{9}\left[\dfrac{10( {10}^{n}  - 1)}{9}  - n \right] \\  \\

Hence,

\implies\sf \: 8 + 88 + 888 + 8888 + .. \: n \: terms  =  \: \dfrac{8}{9}\left[\dfrac{10( {10}^{n}  - 1)}{9}  - n \right] \\  \\

Similar questions