Math, asked by Baddad, 1 year ago

Find the sum of the following AP
-37,-33,-29,... to 12 terms

Answers

Answered by Anonymous
20

 \:\:\:\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \large\mathfrak{\underline{\underline{\huge\mathcal{\bf{\boxed{\huge\mathcal{~~QUESTION~~}}}}}}}

  • Find the sum of the following AP
  • -37,-33,-29,... to 12 terms

 \:\:\:\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \large\mathfrak{\underline{\underline{\huge\mathcal{\bf{\boxed{\huge\mathcal{!!ANSWER!!}}}}}}}

 \:\:\:\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \large\mathfrak{\large\mathcal{\bf{\boxed{\large\mathcal{~~-180~~}}}}}

 \:\:  \underline{\underline{\bf{\large\mathfrak{~~solution~~}}}}

first term(a)=-37

numnber of terms(n)=12

difference=[(-33)-(-37)]=4

therefore the sum of 12 terms is

 =  \frac{n(2a + (n - 1)d)}{2}  \\  =  \frac{12(2 ( - 37) + (12 - 1)4)}{2}  \\  = 6( - 74 + 44) \\  = 6 \times(  - 30) \\  =  - 180

\huge\mathcal\green{\underline{hope\:\: this\:\: helps\:\: you}}

Answered by yokesh172939
6

Step-by-step explanation:

a=-37

d=t2-t1=-33+37=4

n=12

Sn=

 \frac{n}{2}

2a+(n-1)d

S12=

 \frac{12}{2}

2(-37)+11*4

=12/2 *-74+44

=6*(-30)

=-180

Similar questions