find the sum of the following series 1+√3+3+.........upto 8 terms
Answers
Answered by
5
Give G.P series,
1+√3+3.................
common ratio=a2/a1=√3/1
common ratio=√3
sum of n terms=Sn={a(1-r^n)}/(1-r)
Here,
a=1 , r=√3 and n=10
Now we have,
S10={1(1-√3^10)}/(1-√3)
S10={1-243}/(1-√3)
S10={-242(1+√3)}/(1-√3)(1+√3)
S10={-242(1+√3)}/(-2)
S10=121(1+√3)
Hence sum of 10 terms of given G.P series=121(1+√3).
pls mark as brainliest
1+√3+3.................
common ratio=a2/a1=√3/1
common ratio=√3
sum of n terms=Sn={a(1-r^n)}/(1-r)
Here,
a=1 , r=√3 and n=10
Now we have,
S10={1(1-√3^10)}/(1-√3)
S10={1-243}/(1-√3)
S10={-242(1+√3)}/(1-√3)(1+√3)
S10={-242(1+√3)}/(-2)
S10=121(1+√3)
Hence sum of 10 terms of given G.P series=121(1+√3).
pls mark as brainliest
manish6264:
bro the answer is 40(√3+1)
Answered by
2
Answer:
G.P. =1+√3+3+...
a=1 r=√3/1=√3 n=8
Now,Sn=a(rn-1)/r-1
1(√3^8-1)/√3-1
√3×√3×√3×√3×√3×√3×√3×√3-1/√3-1
81-1/√3-1
80/√3-1
80/√3-1×√3+1/√3+1
80√3+1/√3²-1²
80(√3+1)/3-1
80√3+1/2
40√3+1
Hence,S8=40(√3+1) or 40(√3+1)
Similar questions