find the sum of the following series 1+square3+3+...upto 8 terms
Answers
Answer:
1+√3+3.................
common ratio=a2/a1=√3/1
common ratio=√3
sum of n terms=Sn={a(1-r^n)}/(1-r)
Here,
a=1 , r=√3 and n=10
Now we have,
S10={1(1-√3^10)}/(1-√3)
S10={1-243}/(1-√3)
S10={-242(1+√3)}/(1-√3)(1+√3)
S10={-242(1+√3)}/(-2)
S10=121(1+√3)
Hence sum of 10 terms of given G.P series=121(1+√3).
Hope it will help you
Please mark me as brainilest
And thank me
Thank you
Regards
Shagun jain
Answer:
Answer:
1+√3+3.................
common ratio=a2/a1=√3/1
common ratio=√3
sum of n terms=Sn={a(1-r^n)}/(1-r)
Here,
a=1 , r=√3 and n=10
Now we have,
S10={1(1-√3^10)}/(1-√3)
S10={1-243}/(1-√3)
S10={-242(1+√3)}/(1-√3)(1+√3)
S10={-242(1+√3)}/(-2)
S10=121(1+√3)
Hence sum of 10 terms of given G.P series=121(1+√3).
Explanation:
hope it helps you
please mark it as brainiest
thank you