Find the sum of the following series
5+(-41)+9+(-39)+13+(-37)+---+81+(-3)
Answers
Answer:
Step-by-step explanation:
The given series consists of two a.p series
5+9+13+...+81
and
(-41)+(-39)+(-37)+...+(-3)
In the first a.p
a=5 , d=4,an=81
∴5+(n-1)4=81
⇒(n-1)4=76
⇒n-1=19
⇒n=20
∴n=20
∴sn=20/2(5+81)
=10*86
=860
and in the second a.p
a=(-41)
d=2
an=(-3)
∴(-41) + (n-1)2=(-3)
⇒(n-1)2=38
⇒n-1=19
⇒n=20
∴sn=20/2[(-41)+(-3)]
=10*(-44)
=-440
∴total sum of the series
=860-440
=420
Answer:
Step-by-step explanation:
Solution :-
The series can be written as
(5 + 9 + 13 + .... + 81) + [(- 41) + (- 39) + (- 37) + (- 35) ... (- 5) + (- 3)]
For the series (5 + 9 + 13 + ... + 81)
a = 8
d = 9 - 5 = 5
and a(n) = 81
Then, a(n) = 5 + (n - 1)4 = 81
or, (n - 1)4 = 76
⇒ n = 20
S(n) = 20/2(5 + 81)
= 860
For Series (- 41) + (- 39) + (- 37) + (- 35) ... (- 5) + (- 3)
a(n) = - 3
a = - 41
d = 2
Then, a(n) = - 41 + (n - 1)(2)
⇒ n = 20
Now, S(n) = 20/2[- 41 + (- 3)]
= - 440
Sum of the series = 860 - 440
= 420
Hence, the sum of the following series is 420.