Math, asked by RahulTG3547, 8 months ago

Find the sum of the given series 105+112 +119+........+196

Answers

Answered by BrainlyConqueror0901
7

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Sum\:of\:14th\:term=2107}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given : }}  \\  \tt: \implies Series = 105 + 112 + 119 + .... + 196 \\  \\  \red{\underline \bold{To \: Find: }}  \\  \tt: \implies Sum \: of \: series = ?

• According to given question :

 \tt \circ \: First \: term = 105 \\  \\  \tt \circ \: Common \: difference = 7 \\  \\  \tt \circ \: Last \: term = 196 \\  \\  \bold{As \: we \: know \: that} \\  \tt:  \implies  a_{n} = a + (n - 1)d \\  \\ \tt:  \implies 196 = 105 + (n - 1) \times 7 \\  \\ \tt:  \implies 196 - 105 = (n - 1) \times 7 \\  \\ \tt:  \implies  \frac{91}{7}  = n - 1 \\  \\ \tt:  \implies  \frac{91 + 7}{7}  = n \\  \\  \green{\tt:  \implies n = 14} \\  \\  \bold{For \: sum \: of \: 14th \: term : } \\  \tt:  \implies  s_{n} =  \frac{n}{2}(a + l) \\  \\ \tt:  \implies  s_{14} =  \frac{14}{2} (105  + 196) \\  \\  \tt:  \implies  s_{14} = 7 \times 301 \\  \\  \green{\tt:  \implies  s_{14} = 2107}

Answered by Anonymous
3

\sf\red{\underline{\underline{Answer:}}}

\sf{The \ sum \ of \ the \ series \ is \ 2107.}

\sf\orange{Given:}

\sf{\implies{First \ term(a)=105,}}

\sf{\implies{Common \ difference (d)=112-105=7,}}

\sf{\implies{Last \ term(t_{n}=196}}

\sf\pink{To \ find:}

\sf{Sum \ of \ the \ series.}

\sf\green{\underline{\underline{Solution:}}}

\boxed{\sf{t_{n}=a+(n-1)d}}

\sf{\therefore{196=105+(n-1)\times7}}

\sf{\therefore{7(n-1)=196-105}}

\sf{\therefore{7(n-1)=91}}

\sf{\therefore{n-1=\frac{91}{7}}}

\sf{\therefore{n=13+1}}

\sf{\therefore{n=14}}

__________________________________

\boxed{\sf{S_{n}=\frac{n}{2}[t_{1}+t_{n}]}}

\sf{\therefore{S_{14}=\frac{14}{2}[105+196]}}

\sf{\therefore{S_{14}=7\times301}}

\sf{\therefore{S_{14}=2107}}

\sf\purple{\tt{\therefore{The \ sum \ of \ the \ series \ is \ 2107.}}}

Similar questions