Math, asked by papafairy143, 5 hours ago

Find the sum of the infinite series

Question is in the attachment ​

Attachments:

Answers

Answered by talpadadilip417
0

Answer:

\boxed{\huge{\mathbb\pink{REFERR \:TO\: THE\:\: ATTACHMENT }}}

Step-by-step explanation:

hope it help you.

thanks

Attachments:
Answered by mathdude500
6

Given Question

Find the sum of

\displaystyle\sum_{k=1}^{\infty}\rm \displaystyle\sum_{n=1}^{\infty}\rm  \frac{k}{ {2}^{n + k} }

 \red{\large\underline{\sf{Solution-}}}

Given series is

\rm :\longmapsto\:\displaystyle\sum_{k=1}^{\infty}\rm \displaystyle\sum_{n=1}^{\infty}\rm  \frac{k}{ {2}^{n + k} }

can be further rewritten as

\rm \:  =  \: \:\displaystyle\sum_{k=1}^{\infty}\rm \displaystyle\sum_{n=1}^{\infty}\rm  \frac{k}{ {2}^{k} . {2}^{n} }

can be further rewritten as

\rm \:  =  \: \displaystyle\sum_{k=1}^{\infty}\rm \bigg[\dfrac{k}{ {2}^{k}}\displaystyle\sum_{n=1}^{\infty}\rm  \dfrac{1}{ {2}^{n} } \bigg]

\rm \:  =  \: \displaystyle\sum_{k=1}^{\infty}\rm \dfrac{k}{ {2}^{k} }\bigg(\dfrac{1}{2}  + \dfrac{1}{ {2}^{2} }  + \dfrac{1}{ {2}^{3} }  -  -  -  \infty \bigg)

So, its an infinite GP series with

 \purple{\rm :\longmapsto\:a = \dfrac{1}{2}}

 \purple{\rm :\longmapsto\:r = \dfrac{1}{2}}

We know,

Sum of infinite GP series with common ratio r ( - 1 < r < 1 ) and first term a is given by

\boxed{\tt{  \:  \: S_ \infty  =  \frac{a}{1 - r} , \:  \: provided \: that \:  |r|  &lt; 1}}

So, using this, we get

\rm \:  =  \: \displaystyle\sum_{k=1}^{\infty}\rm  \frac{k}{ {2}^{k} }\bigg( \frac{ \frac{1}{2} }{1 -  \frac{1}{2} }\bigg)

\rm \:  =  \: \displaystyle\sum_{k=1}^{\infty}\rm  \frac{k}{ {2}^{k} }\bigg( \frac{ \frac{1}{2} }{ \frac{2 - 1}{2} }\bigg)

\rm \:  =  \: \displaystyle\sum_{k=1}^{\infty}\rm  \frac{k}{ {2}^{k} }\bigg( \frac{ \frac{1}{2} }{ \frac{1}{2} }\bigg)

\rm \:  =  \: \displaystyle\sum_{k=1}^{\infty}\rm  \frac{k}{ {2}^{k} }

\rm \:  =  \: \dfrac{1}{2}  + \dfrac{2}{ {2}^{2} }  + \dfrac{3}{ {2}^{3} }  + \dfrac{4}{ {2}^{4} }  +  -  -  -  \infty

Let assume that

\rm :\longmapsto\:S_ \infty   =  \: \dfrac{1}{2}  + \dfrac{2}{ {2}^{2} }  + \dfrac{3}{ {2}^{3} }  + \dfrac{4}{ {2}^{4} }  +  -  -  -  \infty

Now, its an infinite Arithmetico Geometrico Series, So multiply by 1/2 we get

\rm :\longmapsto\:\dfrac{1}{2} S_ \infty   =  \: \dfrac{1}{ {2}^{2} }  + \dfrac{2}{ {2}^{3} }  + \dfrac{3}{ {2}^{4} }  + \dfrac{4}{ {2}^{5} }  +  -  -  -  \infty

On Subtracting above two equations, we get

\rm :\longmapsto\:\dfrac{1}{2} S_ \infty   =  \: \dfrac{1}{2}  + \dfrac{1}{ {2}^{2} }  + \dfrac{1}{ {2}^{3} }  + \dfrac{1}{ {2}^{4} }  +  -  -  -  \infty

\rm :\longmapsto\:\dfrac{1}{2} S_ \infty   =  \:  \dfrac{ \dfrac{1}{2} }{1 -  \dfrac{1}{2} }

\rm :\longmapsto\:\dfrac{1}{2} S_ \infty   =  \:  \dfrac{ \dfrac{1}{2} }{ \dfrac{1}{2} }

\rm :\longmapsto\:\dfrac{1}{2} S_ \infty   =  \: 1

\bf\implies \:S_ \infty  = 2

Hence,

 \\ \rm :\longmapsto\:\boxed{\tt{  \:  \:  \:  \: \displaystyle\sum_{k=1}^{\infty}\rm \displaystyle\sum_{n=1}^{\infty}\rm  \frac{k}{ {2}^{n + k} }  = 2 \: \:   \:  \: }} \\

Similar questions