Math, asked by syedvali5, 1 year ago

Find the sum of the integers between 100 and 500 that are divisible by 9.​

Answers

Answered by Nereida
7

\huge\star{\green{\underline{\mathfrak{Answer :-}}}}

The first integer between 100 and 500 divisible by 9 is :- 108.

The last integer between 100 and 500 divisible by 9 is :- 495.

The AP will be :- 108,117......495.

The formula for the sum of all the integers is :-

\huge\boxed{\tt{\dfrac {n}{2}(2a+(n-1)d) }}

So,

  • a = 108
  • d = 117 - 108 = 9
  • n = ?

To find the sum, firstly we to find n.

To find n, we will apply the formula :- \tt {a_n=a+(n-1)d} .

\tt\implies 495 = 108 + (n - 1)9

\tt\implies 495 = 108 + 9n - 9

\tt\implies 9n - 9 = 495 - 108

\tt\implies 9n - 9 = 387

\tt\implies 9n = 396

\tt\implies n = 44

Using this in the formula of n,

\tt\leadsto S_n=\dfrac {44}{2}(2(108)+(44-1)9)

\tt\leadsto S_n=\dfrac {44}{2}(2(108)+(44-1)9)

\tt\leadsto S_n=\dfrac {44}{2}(2(108)+(43)9)

\tt\leadsto S_n=22(216+387)

\tt\leadsto S_n=22(603)

\tt\leadsto S_n = 13266

Therefore, the Sum of the integers between 100 and 500 that are divisible by 9 is :-

\huge\boxed {\tt {S_n = 13266}}

Answered by Anonymous
6

\bf{\Huge{\boxed{\tt{\purple{ANSWER\::}}}}}

\bf{\Large{\underline{\bf{Given\::}}}}

The integers between 100 & 500 that are divisible by 9.

\bf{\Large{\underline{\bf{To\:Find\::}}}}

The sum.

\bf{\Large{\underline{\tt{\pink{Explanation\::}}}}}

The integers between 100 & 500 divisible by 9  are 108, 117, 126.........,495.

\bf{Let\:the\:Arithmetic\:progression}\begin{cases}\sf{First\:term\:be\:=\:(a)}\\ \sf{Common\:difference\:=\:(d)}\\ \sf{Number\:of\:terms\:=\:(n)}\\ \sf{Last\:term\:=\:(l)}\end{cases}}

We have,

  • a = 108
  • d = 9
  • l = 495

According to the question :

\implies\sf{an\:=\:a+(n-1)d}

\implies\sf{495\:=\:108+(n-1)9}

\implies\sf{495\:=\:108+9n-9}

\implies\sf{495\:=\:9n+99}

\implies\sf{9n\:=\:495-99}

\implies\sf{9n\:=\:396}

\implies\sf{n\:=\:\cancel{\frac{396}{9} }}

\implies\sf{\red{n\:=\:44}}

__________________________________

We know that formula of the sum of last term, we get;

\bf{\Large{\boxed{\sf{Sn\:=\:\frac{n}{2} (a+l)}}}}}

So,

\longmapsto\sf{Sn\:=\:\cancel{\frac{44}{2}} (108+495)}

\longmapsto\sf{Sn\:=\:22(108+495)}

\longmapsto\sf{Sn\:=\:22(603)}

\longmapsto\sf{Sn\:=\:(22*603)}

\longmapsto\sf{\red{Sn\:=\:13266}}

Thus,

\bf{\Large{\boxed{\bigstar{\rm{The\:sum\:of\:an\:A.P.\:is\:13266}}}}}

Similar questions