Math, asked by eswarcirc405, 1 year ago

Find the sum of the odd number between 0 and 50

Answers

Answered by pritampaliitian
2

1+3+5+7+......+49

=25×(1+49)/2 (sum of A.P.)

=25×25

=625(ans)

Hope this helps you mate....

If yes please mark me as brainliest.....

Answered by Anonymous
24

 \bf \: Question

Find the sum of the odd numbers between 0 and 50.

 \bf \: Solution

The odd numbers between 0 and 50 are 1, 3,

5,....., 49 which form an AP.

 \bf \: Here ,\: first \: term \: (a) = 1, \: last \: term \: (l) = 49

 \bf \: and \: common \: difference \: (d) = 3 - 1 = 2.

Let there are n numbers in the AP.

 \bf \: Then, \: nth \: term \: (a_n) = a + (n - 1) \: d = l

 \implies \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bf \: 1 + (n - 1) \: (2) = 49

 \implies \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \ \:  \bf \: 2 \: (n - 1) = 48

 \implies \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bf \: n - 1 = 24 \implies \: n = 25

 \bf \: Now, \: sum \: of \: n \: terms \: S_n \:  =  \:  \frac{n}{2} \: (a  + l) \\

 \therefore \:  \:  \:  \:  \bf \: Sum \: of \: 25 \: terms, \: S_2_5 \:  =  \:  \frac{25}{2} \: (1 + 49) =  \:  \frac{25}{2} \times 50 \\

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bf \:  =  \: 25 \times 25 \:  =  \:  \boxed{\red{625}}

Similar questions