Math, asked by abijebason, 11 months ago

find the sum of the reciprocals of the zeros of the equation X square + PX + q = 0​

Answers

Answered by cosmiccreed
2

Answer:

Let the roots of equation x2+px+q=0 be a and b

We have a+b=−p and ab=q

\frac{a+b}{ab} =\frac{1}{a} +\frac{1}{b} =\frac{-p}{q}

Step-by-step explanation:

Answered by brainlyaryan12
5

\huge{\red{\underline{\overline{\mathbf{Question}}}}}

→find the sum of the reciprocals of the zeros of the equation X square + PX + q = 0

\huge{\green{\underline{\overline{\mathbf{Answer}}}}}

⇒Given:

  • x^2+px+q=0

⇒To Find:

  • \frac{1}{\alpha}+\frac{1}{\beta}

Solution:

Sum \;of\; Zeroes=\red{\frac{-b}{a}}

\alpha + \beta = \frac{-p}{1}........(1)

And;

 Product\;of \; Zeroes=\red{\frac{c}{a}}

\alpha \beta = \frac{q}{1}........(2)

According to question:-

\Large{\frac{1}{\alpha}+\frac{1}{\beta}}

\leadsto \; \frac{\alpha +\beta}{\alpha \beta}

Using (1) and (2) here ....

\leadsto \; \Large{\frac{\frac{-p}{1}}{\frac{q}{1}}}

\leadsto \huge{\pink{\overbrace{\underbrace{\purple{-\frac{p}{q}}}}}}

≿━━━━━━━━━༺❀༻━━━━━━━━━≾

Formulas Used :-

  •  Product\;of \; Zeroes=\frac{c}{a}
  • Sum \;of\; Zeroes=\frac{-b}{a}

★━★━★━★━★━★━★━★━★━★━★

▂ ▄ ▅ ▆ ▇ █♥️ ᗩᖇƳᗩ♥️ █ ▇ ▆ ▅ ▄ ▂

★━★━★━★━★━★━★━★━★━★━★

Similar questions