Math, asked by gourisweet4560027, 11 months ago

Find the sum of the roots of equation
2x^3-5x^2+ 6x - 123 = 0.​

Answers

Answered by zyedshamsuddin
1

Answer:

 \frac{5}{2}

Step-by-step explanation:

2 {x}^{3}  - 5 {x}^{2}  + 6x - 123 \\  \\  \alpha  +  \beta  +  \gamma  =  \frac{ - b}{a}  \\  \alpha  +  \beta  +  \gamma  =  \frac{ - ( - 5)}{2}  \\   \\  \\ \alpha  +  \beta  +  \gamma  =  \frac{5}{2}

Answered by ItSdHrUvSiNgH
2

Step-by-step explanation:

 \huge\underline{\underline{\sf ANSWER}} \\ let.... \\  \alpha , \beta  \: and \gamma  \: be \: roots.... \\  \\ sum \: of \: roots =  \frac{ - b}{a}  \\  \alpha  +   \beta  +  \gamma  =  -(\frac{-5}{2}) \\   \alpha  +   \beta  +  \gamma  =  \frac{5}{2}  \\   \\ sum \: of \: product \: of \: 2 \: roots =  \frac{c}{a}   \\  \alpha  \beta  +  \alpha  \gamma  +  \beta  \gamma  =  \frac{6}{2}   = 3 \\  \\ product  \: of \: roots =  \frac{ - d}{a}  \\ \alpha   \beta  \gamma  = -( \frac{-123}{2}) \\  \alpha   \beta  \gamma  =  \frac{123}{2}

if \: this \: helps \: don't \: forget \: \\ to \: thank \: this \: answer

Similar questions